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Two-dimensional sandpile model with stochastic slide
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A theoretical two-dimensional sandpile model with stochastic slide is proposed. Numerical simula-
tions show that the behavior of this model is different from that of previous models. Specifically, there
exists a damping length scale, which is in agreement with a real sandpile experiment. The parameter
dependence of the damping length scale is also discussed.
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I. INTRODUCTION

Recently Bak, Tang, and Wiesenfeld introduced a con-
cept of self-organized criticality [1] in the investigation of
extended dissipative dynamical systems. They showed
that such dynamical systems naturally evolve into a criti-
cal state through a self-organization process. This state is
barely stable and, when it is perturbed, the resulting re-
laxation processes are scale invariant. They suggested
that long-range temporal correlation with a 1/f power
spectrum could be understood in terms of self-organized
criticality and that there is connection between 1/f noise
and the spatial self-similar structure of the critical state
[1]. Since then, many physicists have studied various
kinds of such systems. Especially the theoretical sand-
piles are studied extensively as a paradigm for self-
organized criticality [1-4].

Several cellular-automaton models of sandpiles have
been shown both numerically and analytically [4] to ex-
hibit scale invariance under generic conditions. And all
these models have a common feature: the slide is deter-
ministic though the particle may be added at a random
site. In these models, when the sandpile reaches the criti-
cal state, the scaling behavior and universality have been
discussed. Assuming s denotes the toppling size of the
sandpile, and 8 the number of grains that drop off the
edge when a particle is added, one can find in a large class
of sandpiles that the distribution functions D (s) and F(5)
obey the following scaling laws:

D(s)xs™ ¢ (1)
and
F(8)x87F, )

with s or 8 varying in a quite wide range. Here a and 8
are constants, and both D(s) and F(8) are normalized to
the total number of events of adding particles. Since the
simulations are always on systems of finite size, it is im-
portant to consider the finite-size effect. With these taken
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into account, these two distribution functions are fitted
by the finite-size scaling method or multifractal-analysis
method by some authors [1,2].

However, experiments [5—7] which examined the ex-
istence of the critical state in sandpiles draw different
conclusions. An experiment [5] showed that the
avalanches occurred with a mean size and lifetime, which
did not show any critical behavior at the angle of repose,
in contrast to the theoretical models. A recent experi-
ment [6], however, demonstrated the existence of a criti-
cal state in the evolution of a sandpile. In a similar in-
cline ramping experiment [7], a power-law distribution of
size for smaller avalanches occurred, and the number of
these small avalanches followed a power law, which
demonstrated that the system was of critical behavior.
However, in the experiment of Ref. [6], the sandpile was
built up to a critical size and then perturbed by the addi-
tion of individual grains of sand onto the pile. After each
grain was added, the size of the resulting avalanche, if
any, was obtained by recording the total mass of the pile.
For small sandpiles, the scaling law (2) holds, and the dis-
tribution functions F(8,L) of different linear size L of
piles exhibit finite-size scaling. This suggests that these
sandpiles are in a self-organized critical state. For larger
sandpiles, however, the scaling law (2) breaks down, and
the distribution function F(8) becomes sharply peaked at
nonzero values of 8. Therefore, the criticality breaks
down in the limit of large sandpiles, in contrast to the
theoretical models in Refs. [1-4]. According to their ex-
periment, the authors of Ref. [6] believed that the pres-
ence or absence of self-organized criticality was related to
a damping length scale which had not been fully under-
stood. As far as we know, the power law (1) has not been
checked experimentally, and the damping length scale
has not been found in theoretical models yet.

When we talk about the deterministic nature of the
slide, it means that as long as the slope (or height) at
every site of a sandpile is known, the avalanche will lead
the sandpile to unique stable state. However, in a real
sandpile, the behavior is different [8]. Since the grains
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may have different shapes and sizes, and the direction
and magnitude of the force acting on grains of a given
site might be different, the dynamics of an evolving sand-
pile could be very complicated. So it will be reasonable
to introduce a stochastic nature in the evolution process-
es of a sandpile. On the basis of this, we propose an alter-
native theoretical model. The main results of this model
have already appeared in a previous Rapid Communica-
tion [9].

The present model differs in two ways from the previ-
ous ones. First, the region over which the grains are add-
ed is confined to a certain part of the sandpile, instead of
adding randomly on the whole pile; this is in agreement
with the experimental arrangement [6], where the grains
are dropped onto the top of a sandpile. Second, the slide
is stochastic instead of deterministic. To characterize
this feature, the threshold value at a site is allowed to
change when this site accepts grains sliding from its
neighbors. This difference makes the behavior of the
model quite different from that of the model with deter-
ministic slide [1,2]. Comparing the results of this model
with those of the experiment [6], one may find that our
model is much closer to the real sandpile. By investigat-
ing this model we could understand more about the evo-
lution processes in real sandpiles.

II. THE MODEL

In the present model, the sandpile is built up on a base
of an isosceles triangle. The basic variable 4 (x,y) in the
model is the height of the sandpile at the site (x,y), here
x 20,y 20, and x +y < L. Boundary conditions are such
that the grains can flow out of the system at the bottom
side x +y =L only. We define a vector field (Z,,Z))
with

Z.=h(x,y)—h(x+1,),
Z,=h(x,y)—h(x,y +1),

(3)

and denote Z =max(Z,,Z,) as the slope. We define also
a threshold Z, which determines whether a site is stable.
In order to make our model closer to the experiment [6],
we assume that the added grains are confined to the top
part of the sandpile x +y <cL, with 0=<c¢ <1. When a
grain is added at a certain site, the height of this site will
increase by a unit. So the addition of a grain at site (x,y)
is expressed by

h(x,y)—h(x,y)+1 for x +y <cL . 4)

If the slope at some site (x,y) exceeds the threshold Z,,
zZ>Z,, (5)

this site becomes unstable and will give s =Z —Z_ grains
to the lower one of its two nearest-neighbor sites at
(x +1,y) or (x,y +1), then

h(x,p)—h(x,y)—s (6)

and
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hix+1,y)—>h(x+1,y)+s

for h(x +1,y)>h(x,y+1),
(7)

hix,y +1)—h(x,y +1)+s
for h(x,y +1)>h(x +1,y) .

If the two neighbors have the same height, the grains top-
ple to either site with equal probability. The open bound-
ary conditions are

h(x,y)=0 for x +y=L . (8)

In order to introduce a stochastic slide in the evolution
processes of the sandpile, we assume that the threshold
Z, at site (x,y) could change according to the number of
grains falling from its neighbors, (x —1,y) and (x,y —1).
In other words, when some particles slide from its neigh-
bors of a given site, this site must obtain a certain quanti-
ty of momentum. So the particles at this site might be
easier to topple. Therefore the threshold at this site may
become lower. Let p.(r) be the probability that the
threshold Z, becomes Z, —r when the number of parti-
cles sliding from its neighbors is s. Certainly, there is
considerable freedom in the choice of a form for the func-
tion p,(r). In general, we know that p (r) =0, py(r)=35,,.
Since the more grains fall the lower the threshold will be,
the average of r, i.e., {r)=3_,rp,(r), must be a mono-
tonically increasing function of s. Moreover, (r) must
be bounded. In this paper we first choose the following
simple form for the function p (r) for s > 0:

0 forr<Oorr>r,
1—A for r=0
A/s for 1=r=r.—1

(s—r,+1DA/s forr=r,<s+1,

ps(r)=

with two parameters A and r,. The values of the two pa-
rameters could vary in 0SA=<1 and 0<r,<Z_.. When
A—0, this model comes back to a trivial two-dimensional
model [2], which has a minimally stable state, and has no
self-organized criticality.

In the following sections we will discuss the influence
of the form of the function p,(r) upon the properties of
sandpiles.

III. THE DAMPING LENGTH SCALE

In Ref. [9], many results, which conform to those of
the experiment in Ref. [6], were drawn in the case of the
above model with ¢ =0.5, A=0.2, r,=5. One of the
most important results is that there exists a damping
length scale, which was considered to relate to the pres-
ence or absence of self-organized criticality in a real sand-
pile by the authors of Ref. [6].

As shown in Ref. [9], (ATjy) increases with the base
size L of the sandpile; here (ATa ) is the average time in-
terval between the successive events of the mass flow off
the sandpile. The value of the exponent ¥
(y=dIn{ATg)/dInL) is not always the same for
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different base sizes L of the sandpile. There exists a turn-
ing point in the curve of In{ Ty ) versus InL (see Fig. 2 in
Ref. [9]). This turning point corresponds to a base size
L. of the sandpile which is called the damping length
scale. The value of y is very large when L <L,, but
much smaller when L >L_.. However, there is no damp-
ing length scale in the BTV model of two dimensions in
Ref. [1]. In the next section we will see that the existence
of the damping length scale is due to the stochastic na-
ture of the slide.

The large value of y when L <L, could explain why
the behaviors of the fluctuations in total mass M of sand-
piles are quite different for the sandpiles with different
base sizes (see Fig. 4 in Ref. [9]). Because the value of the
exponent ¥ is very large when L <L, the average time
interval (AT ) will increase rapidly when the size of the
sandpile increases. So the number of avalanches occur-
ring will become smaller while the average size of
avalanches will become larger in the same time interval,
for when the total number of adding grains are the same.
This is in agreement with the experiment in Ref. [6].
Therefore, one has to measure for a longer time to get
sufficient information about the evolution of M for sand-
piles with large bases.

In addition, because of the existence of the damping
length scale, and the value of ¥ considerably large at
L <L, while small at L > L_, the scaling behavior of the
distribution functions F(8,L) of different base sizes L of
sandpiles are different from the theoretical models dis-
cussed previously [2], here §, as mentioned above, is the
total number of grains that flow off the system when a
grain is added. Multifractal analysis of F(8,L) shows
that the sandpiles with different sizes can be divided into
two groups, see Fig. 3(b) in Ref. [9]. The first group
comprises sandpiles of small size, L <L,. The second
group consists of the sandpiles with L >L_.. Therefore,
we believe that the sandpiles with base sizes smaller or
larger than L, belong to different classes of universality.

Like the results measured in the experiment [6], the
mass power spectrum of the time series have the trivial
form 1/f? for the present choice of parameters. This is
in agreement with the theoretical analysis in Ref. [10],
and consistent with the power spectrum of a weighted
random walk.

IV. THE EXPLANATION FOR THE EXISTENCE
OF THE DAMPING LENGTH SCALE

The reason for the existence of the damping length
scale is nothing but the stochastic nature in the sliding
process. At the beginning of an avalanche caused by add-
ing a single grain, the threshold must be Z,. With every
step in the toppling process, there is some chance to
lower the threshold. The larger the size L of the sandpile
there is, the more events of decreasing the threshold will
occur, and the lower threshold Z, —r will be generated.
This will certainly make the size of the avalanche larger,
and cause a larger time interval (AT ). Hence the value
of ¥ could be larger for L <L_.. Let us use P.(x,y) to
represent the average probability density with which the
threshold at site (x,y) becomes Z_, —r,, the lowest one,
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FIG. 1. The probability density P.(x,x) will reach saturation
as x increases. Here ¢ =0.2, A=0.2, r. =5, the saturation point
site x, is about 14, and the corresponding damping length scale
L. is about 28.

when this site has accepted grains sliding from its neigh-
bors in the sliding processes for a given sandpile with
base size L. We will see that P.(x,y) may reach satura-
tion as grains slide from the top to the open boundary.

Note that P,(x,y) cannot exceed the value of A in Eq.
(9). To see the saturation property clearly, we plot
P, (x,y) versus (x,y) along the line x =y in Fig. 1. This
curve can represent the change of P.(x,y) typically.
P_(x,x) will reach a saturation value at a certain site x,
corresponding roughly to the damping length scale L..
At the upstream of this site x <x,, P.(x,x) increases
with x. In other words, the probability with the lowest
threshold increases in the sliding process, the total num-
ber of sites in the whole sandpile where their threshold is
lowest becomes more, and these sites topple more easily.
So the average avalanche size could increase rapidly with
L, and the average time interval (AT ) could increase
rapidly with L. Hence the exponent ¥ could keep large
at L <L.. However, at the downstream of this site
x >xg, P,(x,x) remains almost unchanged. That is to
say, the probability density for a site with the lowest
threshold does not increase in the sliding process, and the
total number of the sites in the whole sandpile where
threshold is the lowest has reached saturation. So the
avalanche size and therefore the average interval time
(ATs) do not increase rapidly with L when L >L..
Hence the slope ¥ must be smaller for the case of L > L.
Because the slide in a real sandpile would be of a stochas-
tic nature, we expect that the qualitative characteristic of
the curve in Fig. 2 of Ref. [9] could be verified experi-
mentally. Based on the experiment of Ref. [6], we believe
that the relation between (AT ) and L predicted in this
model is qualitatively correct.

V. THE PARAMETER DEPENDENCE
OF THE DAMPING LENGTH SCALE

Because of the introduction of stochastic nature in the
sliding process, there exists a damping length scale L.
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TABLE I. The damping length scale L. decreases as A in-
creases with the value of 7. and c fixed.

A 0.1 0.2 0.4 0.6 0.8
L, 36 32 24 20 18

The existence of L, is the important characteristic of the
present model that is different from previous models. In
the above section, the numerical simulation results were
shown for the value of parameters ¢ =0.5, A=0.2, r,=5
for model (9). Now we pay attention to the parameter
dependence of the damping length scale.

From the forms of model (9), we can see that the larger
the value of A is, the easier the slide occurs. In other
words, the larger the value of A is, the faster the P, (x,x)
reaches its saturation value. Therefore, the correspond-
ing value of the damping length scale L, becomes small.
In Table I we give the values of the damping length scale
L. for different values of the parameter A when the values
of r, and c are fixed. From this table, one can see that the
damping length scale L, decreases as A increases.

The change of the value of ¢ also influences the damp-
ing length scale. The results in Fig. 2 show that the
damping length scale L, becomes larger when the value
of ¢ changes from 0.2 to 0.5. The increase of the value ¢
means that the region over which grains are added be-
comes larger, the grains could be added closer to the
open edge of the sandpile, and the events of lowering the
threshold led by these grains would have smaller proba-
bility. P.(x,x) will reach a saturation value more slowly
when c increases. So the corresponding damping length
scale L, increases.

Finally, the avalanche size 8 is also closely related to
the value of r,. Results are shown in Fig. 3. When the
value of r, increases, the threshold can be much lower,
and the grains topple more easily. So the avalanche size
can become much larger, and therefore the average inter-
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FIG. 2. The damping length scale L, decreases as the value ¢
decreases from 0.5 to 0.2. The dashed line is for ¢ =0.5. The
solid line is for ¢ =0.2. Here A=0.2, r,=5.
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FIG. 3. The value of the slope for the part L <L, increases
when the value r, increases from 5 to 10. The curves for r.=5
are shown by dashed lines and for r.=10 by solid lines. Here
A=0.2 and ¢=0.2.

val time { ATs ) will increase with L faster, then the slope
of the curve (ATjg) versus L for L <L, becomes larger
when 7, increases.

In general, the damping length scale is closely related
to the value of these three parameters.

VI. DISCUSSION AND CONCLUSION

The stochastic nature of the sliding process is the
reason for the existence of the damping length scale. So
different forms of the function p,(r) should not change
the properties of the model qualitatively. To prove this,
in numerical simulations we select another function for

ps(7):
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FIG. 4. The value of slope for the part L < L, in model (13) is
larger than that in model (9). The solid line indicates model
(13).
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(1—u)u for r<r,

Te

p(r)=u° for r=r, (10)
0 forr>r,,

where u =exp(—1/sA). Figure 4 shows the relations be-
tween the average interval (ATs) and the base size of
the sandpile L for this model. For comparison, the curve
(AT ) versus L for model (9) with the same value of pa-
rameters is also given. One can see that the damping
length scale still exists for model (10), but the value of
damping length scale is different from the previous one,
and the value of the slope in the part of L <L_ for model
(10) is apparently larger than that for model (9). The nu-
merical simulation also shows that other properties of
this model are qualitatively the same as model (9).

In conclusion, we introduced an alternative kind of
theoretical sandpile model. The main difference from
previous models is that the slide is stochastic instead of
deterministic. This difference makes the behavior of the
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model here change in many ways, especially, the ex-
istence of the damping length scale in our model. It does
not exist in any one of the previous models, but is in
agreement with the real sandpile experiment [6]. Besides
this, the universality and scaling properties of the model
here are also different from those of previous models. Be-
cause the exponent y is considerably large at the part of
L <L, the average interval time (ATj) increases rapid-
ly with the size of the sandpile, and a more time-
consuming experiment is expected for verifying the criti-
cal behavior for larger sizes of sandpiles.
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